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Electromagnetic-Field Theory and Numerically
Generated Results for Propagation

in Left-Handed Guided-Wave
Single-Microstrip Structures
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Abstract—Dispersion diagrams and magnetic- and electric-field
distributions are found for a microstrip structure containing a
simple left-handed medium (LHM). The LHM material consti-
tuting the substrate has characteristics chosen to overlap with
potentially realizable substances. Calculations are done using a
fast solver anisotropic Green’s function spectral-domain computer
code. The theoretical-field method, valid for complex layered
structures and anisotropies in the LHM, underlying the compu-
tational procedure, which is critical for finding the dispersion
diagrams and field distributions, is presented. It is found that the
dispersion diagrams and field distributions are very unusual and
admit the possibility of completely new device realizations based
on combining LHM with conventional materials in a multilayered
configuration.

Index Terms—Dispersion diagrams, field distributions,
left-handed media (LHM), microstrip.

I. INTRODUCTION

THERE HAS been great interest in the last few years in
trying to understand the properties of structures config-

ured for making focusing devices capable of having radically
new properties based on the concepts coming from the use of
what has been variously referred to in the literature as nega-
tive media, left-handed media, double-negative media, or back-
ward-wave media [1]–[12]. There are many unusual properties
of such media and, although in the physics and electronics lit-
erature many fascinating issues have been explored, we will not
address what has held the attention of most researchers, which
are the properties leading to convergent focusing behavior [1],
[3] when ordinary media would lead to divergent rays and the
attendant perfect focusing consequences. All that will be stated
is that in light of multidimensional aspects of real lensing sys-
tems, and imperfect media, including finite dispersion and finite
loss, the sought-after effect may turn out to be not quite what
was expected [5], [11], although still tremendously interesting
nevertheless.

Here, no less a fascinating aspect of the left-handed medium
(LHM) will be explored, the electronic guiding-wave properties
of structures loaded with such media. We choose to define the
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LHM phenomenologically by assigning to it a negative permit-
tivity and permeability simultaneously satisfied.
The slight difference in this definition of an LHM versus, say,
using a backward-wave definition, although noticeable, is not
enough to confuse the basic phenomenon to follow. Our aim
is to first explore the area of dispersion diagram description
of a realistic structure for wave propagation, then study some
dependencies on the LHM description, and once coming away
with some insight of electronic operation, to seek some electro-
magnetic-field plots to elucidate what might be available in the
realm of original devices employing a configuration that yields
entirely new distributions of fields.

This is a tall order, and we do not want to overstate our aim.
It will be sufficient to merely obtain enough results as outlined
above to direct the next effort into understanding where LHM
may be useful for integrated circuits. Our study will delve
into the microwave and millimeter wavelength regimes. It is
expected that the use of LHM in electronic microwave and
millimeter-wave devices will allow new types of phase shifters,
couplers, and isolators, for example, to be developed. In the
first few sections of this paper, we will turn our attention to
the transfer matrix operator theory for field and Green’s
functions (Section II), electromagnetic-field expressions using
the operators (Section III), and surface current and field
extraction formulas (Section IV). Following this, numerically
generated dispersion diagrams and electromagnetic-field
distributions of single-microstrip structures are presented
(Section V).

It is noted here that, in order to keep the approach general
and applicable to cases where some of the layers surrounding an
LHM layer or the LHM itself have complex material behavior
involving anisotropy, bianisotropy, nonreciprocity, or non-Her-
miticity [see Fig. 1(a)], the Green’s function and operators
are treated as arising from complex materials.

II. TRANSFER MATRIX OPERATOR FOR FIELDS AND

INTERFACIAL GREEN’S FUNCTION

The transfer matrix operator , which takes the tangen-
tial fields at one location, say, , to another location,
say, , is used to both find the interfacial anisotropic
Green’s function for obtaining the propagation constant and the
electric and magnetic fields throughout the device structure [the

cross section; see the example structure in Fig. 1(a), which
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(a)

(b)

Fig. 1. (a) Example structure containing an LHM showing the xy cross section
and coordinate axes. (b) Perspective drawing of the single-microstrip structure
to be simulated.

shows the coordinate axes with the -direction pointing out of
this paper] [13]. It is , where ,
being the 4 4 matrix describing the material tensor proper-
ties of each individual layer and the partial differential Maxwell
equations. By the Cayley–Hamilton theorem [14], may be
written as

(1)

where are the expansion coefficients found by solving a 4
4 system, such as the doubly degenerate case

(2)

Here, are the -directed propagation constants, and may
also be viewed as . Equation (2) may be
stated as

(3)

where is now the matrix operating on the vector resulting in
the right-hand vector containing exponential elements . Some

degree of control over the robustness of the numerical solution
of (3) occurs by replacing the right-hand-side vector by

(4)

or

(5)

yielding an altered vector

(6)

Operator created using the new vector in (6) looks like

(7)

Next let us examine what this exponential scaling process
does to the operators needed to make the interfacial
anisotropic Green’s function for a two-layer structure. The new
pull-through operators are

(8)

(9)

Here, and are the layer thicknesses for the first and
second layers. In general, for the th layer, its thickness is .
For anisotropic Green’s functions used in a strip format, the
electric fields at the guiding metal interface are related to the
surface currents by

(10)

where indicates the Fourier transform index and the tildas
on the symbols indicate Fourier transform variables (a finite
Fourier transform is applied). Denoting the th element of
the pull-through operator as , , anisotropic
Green’s functions at the interface are

(11)

(12)
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(13)

(14)

Inserting (8) and (9) into (11)–(14), the anisotropic Green’s
functions may be expressed in terms of the operators.
Consider the element

(15)

All other anisotropic Green’s function elements give a similar
answer, i.e., that the altered anisotropic Green’s function and
original anisotropic Green’s function are identical. This impor-
tant result leads us to the conclusion that one can do scaling, as
shown in (4), without damaging the final interfacial anisotropic
Green’s function. This reasoning, although somewhat more in-
volved, is applied in Section III for acquiring the electromag-
netic fields.

III. ELECTROMAGNETIC FIELDS USING OPERATORS

Information on the electromagnetic field within a layer and
manipulation of the electromagnetic field to effect a transfor-
mation of the electromagnetic field from one layer to the next is
contained in the column vector

(16)

From the fields contained in this field vector, the two other re-
maining field components and can be found. Using the

operator found in Section II, the fields in the layer under
the strips for the two-layer example are

(17)

with the field at the location for a perfect ground
plane given by

(18)

with

(19)

(20)

Currents and are known from the first part of the
computational engine, which has found the propagation constant

along with the unknown expansion coefficients of the surface
currents. Note that, throughout this section the first argument
of the functions, the spectral index , is suppressed, while
only the coordinate is retained, to simplify notation. Thus,

, , and for example, are actually ,
, and . At the end of Section IV, during the

field extraction discussion, the spectral index or its Fourier
transform is reinstated.

Fields above the interface are expressed by an equation sim-
ilar to (17) with the discontinuity of the magnetic field taken
into account. Use of pull-through operators above the interface
are necessary [in this case, the only one being ].

(21)

This equation gives the value of the field in the layer.
Equations (19) and (20) were determined by setting in

in (21) ( is the total vertical structure
thickness and number of layers) and solving the system of
equations for and in terms of the surface currents

and using the operators defined by the differ-
ential equation

(22)

with

(23)

Formula (21) is written in global coordinates of the structure,
and (22) [and (23)] in local coordinates of the layer. Look at
(17) again, rewriting it in the specific coordinate for the th
layer, with here. Then

(24)

This equation means that the tangential fields are examined in
the th layer at the global location . Since it is the
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local coordinate that the operator explicitly operates on,
(24) may be recast as

(25)

where the local coordinate now explicitly appears,
found as

(26)

from its global structure value by subtracting thicknesses of
all the underlying layers.

A general solution of (22) may be stated as

(27)

for field behavior in the th layer, where . Thus,
acquisition of the field further up in the layer at is
accomplished by post-multiplying its value at the lower
location by the pull-up operator (multiplication
operations occur from right to left). Multiplying both sides of
(27) by the inverse of , assuming it exists, will
allow movement from a higher location to a lower one, namely,

(28)

where the last line in (28) follows from (23), meaning the in-
verse will exist. Operator can be written as

, where and the subscript
notation stores the layer information as before. Therefore, the
equivalent of (21) for marching down the structure (decreasing

) is

(29)

where the reversed sign in the second term arises from not
adding on the discontinuity in advancing to larger , but in
subtracting due to reducing . This equation gives the value of
the field in the layer.

Instead of using (21) to find at the top of the structure, (29)
can be utilized by setting and solving the system
of equations for and in terms of the surface
currents and using the inverse of the operators. En-
listing the fact that

(30)

(29) is put in its most convenient form to enable the following
solution:

(31)
Consequently, fields in layer can be expressed as

(32)

Here, the first line in (32) uses a local coordinate for the variable
argument , the second line uses a global coordinate. The
starting top field is

(33)

with

(34)

(35)

where all arguments of operators are understood to be neg-
atives of the respective layer thicknesses, i.e.,

(36)

(37)

Again, as in Section II for the interfacial anisotropic Green’s
function, a greater degree of control over the robustness of the
numerical solution of and occurs by taking the diagonal
exponential eigenmode matrix in the construction

(38)

and replacing it by

(39)
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where in the th layer

(40)

Here, is the 4 4 matrix made up of the eigenmode
column vectors ,

(41)

Based upon the altered from (38) and (39)

(42)

and the altered operator is

(43)

The altered operators must be placed into the
field expressions, suitably generalized from (19) and (20) for
any number of layers in the device

(44)

(45)

where

(46)

In (46), the products advance to the left, with being the
total number of layers, and and being, respectively, the
number of layers above and below the interface. Applying (43)
to (44) and (45) produces

(47)

and

(48)

Now the fields may be found below the interface, following
(17), but upgraded to any number of layers

(49)

in the th layer. For the altered problem, becomes

(50)

with the altered ground-plane field

(51)

Inserting (43) into (50)

(52)
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Field quantity is calculated, and then it must be
re-scaled using (52) by

(53)

For fields above the interface, (34) and (35) are generalized
to

(54)

(55)

where

(56)

Thus,

(57)

and

(58)

having used a plus sign in the exponent in (43) and the argument
of may be set negative as in (56). Above the interface, the

fields are following (32), but upgraded to any number of layers

(59)

in the th layer. The upper ground-plane field is

(60)

Consequently, for the altered problem, becomes

(61)

Field quantity is calculated above the interface, and
then it must be re-scaled using (61) by

(62)

The code finds and, as the final step, performs (53) or
(62). Since , a function of the spectral
number , the unscaling is done for each spectral term, noting
that . Acquisition of the Fourier-transformed
fields from the spectral-domain processing is the second to last
major step in finding the field for producing plots. The final step
involves doing the inverse transforms on all the field compo-
nents, including the current distributions on the strips, which
will be covered in Section IV.
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IV. SURFACE CURRENTS AND FIELD EXTRACTION

The surface currents can be chosen in a number of ways, it
only being necessary to prepare complete sets of basis functions,
which are used to construct them. They are selected in the real
space domain to display some advantageous property, e.g., edge
singularity behavior due to charge repulsion. For the complete
set of cosinusoidal basis functions modified by the edge condi-
tion, we have for a strip with even-mode symmetry (determined
by the -component symmetry)

(63)

(64)

Now let us derive the Fourier transforms of these two current
basis functions. We will leave it open as to the polarity of the

transform pair used in order to demonstrate an interesting phe-
nomenon, which must be addressed in order to properly align
the transform surface currents with their transform electric and
magnetic fields. First consider , with a transform current
for the th basis function, shown in (65) at the bottom of this
page. There are a number of change of variables employed to
get the final result, where it is displayed in terms of the Bessel
function of the first kind of zeroth order [15].

Next consider with a transform current for the th
basis function, shown in (66) at the bottom of the following
page.

What we learn from inspecting (40) and (41) is that the po-
larity of the Fourier transform will not affect the extraction of the
propagation constant from the system of equations describing
the structure because only the determinant of the system is con-
sidered, and signs may be absorbed in expansion coefficients
and forgotten. However, reconstruction of the field, including
the surface current, requires no uncertainty in polarity of the
transform. We choose to use the negative polarity so that the real
space current, and electric and magnetic fields given by ( in

(65)
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, may also be found directly from (63) and (64) without
the associated Gibbs phenomenon, allowing an extra assessment
of the quality of the transform performed)

(67)

(68)

where the expansion is truncated at a maximum number of terms
for all field vectors. Basis function maximum expan-

sion numbers , , and can differ for and
in (63) and (64). Currents and fields in (67) and (68) are

cross-sectional values, with -dependence understood as .

The current and fields are real physical quantities so they must
be converted through

(69)

which reasserts both the time and -dependence down the
guiding structure. At a particular -plane, say, , we may
drop out the explicit -dependence, and if we do not wish
to watch the time evolution of the harmonic wave, which is
sufficient for plotting purposes, we may further set and
write (69) as

(70)

(66)
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Fig. 2. Dispersion diagram from 1 to 100 GHz for a single-microstrip structure with an LHM substrate. The normalized complex propagation constant 
 =
(�+ j�)=k is shown for only the fundamental even mode. Vertical dashed lines indicate field plots done later in this paper (red) or elsewhere (black).

Finally, the real power flow down the device in the -direction
is found from the instantaneous Poynting vector

(71)

as

(72)

The last equality in (72) utilizes transverse fields (cross-sec-
tional fields). The subscripts are suppressed below since we
will only discuss real physical-field distributions.

V. DISPERSION DIAGRAMS

A single-microstrip structure is considered because mi-
crostrip is one of the basic building blocks of microwave
integrated circuits. Since nothing is known about the charac-
teristics of multilayered microstrip structures utilizing LHMs,
we will study the most basic configuration, i.e., a single
substrate case. Fig. 1 shows such a structure, which includes
the bounding walls (not shown). The strip is presumed perfect
metal with width mm. Substrate thickness
of the LHM is mm, which makes for this
particular configuration. Symmetrically disposed vertical side-
walls are placed at mm, making the total wall-to-wall
separation mm. The second layer above the substrate
is selected to be vacuum (ideal air with ) with
thickness mm, making .

Since the absolute values in permittivity and permeability
are nominally in the experimentally frequency band-limited

range of 1–10, we choose and permeability
(relative values) as potentially practical values for which

simulations would be demonstrative.

Fig. 2 shows the dispersion diagram giving propagation con-
stant , against the frequency (in gigahertz).
Note that the propagation constant is provided in normalized
form, a unitless quantity. This calculation has been done using
a spectral-domain simulation employing the moment method
with a general Green’s function capable of handling arbitrary
anisotropy and non-Hermitian media [16]. That is, the tensors
describing the materials, in this case, the LHM, could, in fact, be
anisotropic and lossy. However, what we have done here is limit
ourselves to the situation of isotropy and lossless media, in this
case that of the LHM. This will in no way limit our results and
insights sought, which will rely on the basic aspects of LHM
and Hermiticity. Vertical dashed lines (red) indicate frequency
points at which we will later find field distributions or which
have been investigated elsewhere (black dashed lines) and are
not shown here.

For now, direct attention to the upper (blue) curve giving
and the lower (green) curve giving . Below 6 GHz and above
75 GHz, only is nonzero. In these regions, therefore, due
to , pure propagation of the wave will occur down the
guiding structure in the -direction. This is not the case for the
intermediate region GHz. Here, , causing the
wave to evanesce, a property of a wave traveling that can occur
in a medium with a Hermitian constitutive tensor. Examination
of the area close to shows that the slope of be-
comes gentle while being positive. Thus, one can identify the
whole dispersion curve as being associated with a fundamental
mode, not unlike that seen for ordinary media substrates, which
would limit to a finite value as . Of course, this limiting
value is a characteristic of guiding structures with central metal
pieces not touching the bounding perfect electric walls.

These bounding electric walls are similar to those found in
enclosed structures, and here are, in fact, what may be referred
to as computational walls.

Phase velocity is given by and this
can be seen to be positive for the entire plotted dispersion curve
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Fig. 3. Phase propagation constant �=k (normalized) versus relative LHM permittivity variation j"j over the j"j = 1–10 range for two frequencies f = 2:5
and 90 GHz in the propagating regions of the dispersion diagram. The pure TEM j"j dependence is shown for comparison.

. However, the story is different for the group velocity
. For the region

GHz, the quantity , making , while ,
which is to say that with respect to propagation in the -direc-
tion, the wave is a backward wave. Likewise, in the region where

GHz for the lower branch, again, , giving
us a backward wave in the region where pure phase propaga-
tion occurs. This backward-wave behavior neither occurs in the
low-frequency regime, however, nor in the upper branch beyond

GHz.
A backward wave will have the power or energy flow per

unit time in the opposite direction than the phase propagation
[2], [10]. Since the variation of the harmonic spectral solution
has a time and -dependence like , which is equal to

, the vector product sign determines
whether or not the wave is backward or not. If ,
the wave is backward. Notice also for the waves that ,
assuring us that casuality is satisfied. The backwardness of
the wave in the transmission (longitudinal) direction should
not be confused with the inherent backwardness (or nearly
so with the earlier caveat) of the LHM. This inherent wave
backwardness displays itself by acting in the propagation phase

and group transverse velocities in the cross section
as they constructively and destructively interfere when waves
enter the LHM.

A word should be said about other modal solutions. As the
frequency gets higher, generally speaking, more modes seem to
become admissible. This is not surprising and not unlike what
we are familiar with for ordinary media. Thus, in the higher fre-
quency regime, around 80 GHz, for example, the cluttering of
the modal spectrum on a dispersion diagram plot arises. We have
purposely left this out in order not to confuse the discussion. Nu-
merical calculations were done using basis expan-
sion functions for the driving currents on the strip in the - and

-directions, where the -direction is in the horizontal direction,
the -coordinate normal to the plane of the layers. Tests were

done also for using and . The spectral sum oper-
ator in the Fourier-transform domain has ,
although it too has been looked at for higher . Only
tiny dependencies were seen on these numerical parameters.

Fig. 3 gives the variation of the phase propagation constant
against the absolute value of the permittivity. This

has been done for two frequencies, each in the regions of pure
propagation, GHz and GHz. For small , the in-
crease is exponential, but it rapidly slows to a linear trend for
the upper GHz (magenta) curve and a sub-linear trend
for the lower GHz (green) curve. The upper curve pro-
vides over a 10 : 1 range of permittivity, while the lower curve
does this nearly over a 5 : 1 range. The curve showing is
provided for reference to TEM guided-wave behavior.

Next we will turn our attention to the electromagnetic-field
distributions in Section VI.

VI. ELECTROMAGNETIC-FIELD DISTRIBUTIONS

Once the propagation constant is found, the expansion coef-
ficients used in the driving strip currents may be calculated and,
with this determination, the electromagnetic fields are then also
found. Since the processing occurs in the spectral domain, the
final fields must be mapped back into the real space domain, al-
lowing field distributions to be produced. Figs. 4 and 5 show line
plot distributions of the electric and magnetic field vec-
tors in the device cross section at 10 GHz. The substrate in Fig. 4
is a regular material and, thus, provides a comparison for the re-
sult seen in Fig. 5, which uses an LHM. Line plots are created
by proceeding along a field curve in a tangential manner [17]
using finite steps , , which maintain
sufficient accuracy to render the final plot representative of the
actual field behavior. Fig. 4 was produced using mm
with electric-field lines (solid blue curves) emanating from the
microstrip metal and magnetic-field lines (dashed red curves)
encircling the strip. The substrate–dielectric interface (here the
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Fig. 4. Line distribution plot of the transverse electric E (solid blue) and
magnetic H (dashed red) field vectors in the device cross section at f =

10GHz. The substrate is ordinary material with " = 2:5 and� = 2:3, thickness
0.5 mm. Strip widthw = 0:5mm, air region 5.0-mm high, and structure width
b = 5:0 mm.

Fig. 5. Line distribution plot of the transverse electric E (solid green) and
magnetic H (solid red) field vector directions in the device cross section at
f = 10 GHz. The substrate is LHM with " = � = �2:5 with the geometry
the same as in Fig. 4.

top dielectric is perfect air) is indicated by the black dashed line
at mm and the metal itself by the solid black line.
Fig. 5 uses mm with electric (solid green curves)
and magnetic (solid red curves) field lines, respectively, again
emanating from the microstrip metal and encircling the strip.
We are in the complex propagating region of the dispersion dia-
gram (see Fig. 2) near its beginning. It is apparent that the field
line distribution is radically altered for the electric fields, with

Fig. 6. Field distribution plot of the transverse electric E field vector (arrow
length denotes magnitude) overlaid on the electric-field magnitude E = jEj
(color) throughout the LHM device cross section at f = 10GHz. Substrate and
geometry are the same as in Fig. 5.

the electric field lines being “repelled” from the interface above
the LHM substrate region below. Another surprising result is
that the field lines are still pointing away from the strip when
going from the normal device in Fig. 4 to the LHM device in
Fig. 5. This occurs because the charge distributes such that it
is positive on the top microstrip metal surface and negative on
the bottom surface. Finally, the magnetic-field lines circulate
around the strip, but clockwise below the interface and counter-
clockwise above it, with their appearance considerably altered
from the regular media substrate case. Notice that bilateral sym-
metry is displayed in Figs. 4 and 5, as expected for scalar mate-
rials, whether regular or left-handed.

Although the field line distribution plots are very instructive,
they provide more of a qualitative measure, if they do it at all,
of the field vector size (relative line density) than a quantitative
measure. In order to provide another visualization technique,
which can do this directly, Fig. 6 shows both the electric-field
magnitude and the cross-sectional vector field , which with
the longitudinal field component generates the total three-
dimensional (3-D) vector field , where is
the unit vector in the -direction and . The
plotted magnitude distribution in Fig. 6 is not the cross-sec-
tional magnitude using only the cross-sectional components of

, but rather the full vector.
All combined arrow and magnitude field plots are generated

from a 8372 rectangular grid from the spectral domain code,
from which a plotting package Fortner is used to interpolate
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Fig. 7. Field distribution plot of the transverse magneticH field vector (arrow
length denotes magnitude) overlaid on the magnetic-field magnitude H = jHj
(color) throughout the LHM device cross section at f = 10GHz. Substrate and
geometry are the same as in Fig. 5.

for or , or produce a 22 23 or 23 23 grid for or
, respectively. Grid overlays are done by maintaining bilat-

eral symmetry with respect to the -axis for . (This is why
we have ended up with two closely spaced vertical left or hor-
izontal bottom bounding walls, merely an artifact.) The rectan-
gular grid coming out of the spectral-domain code was produced
by partitioning each layer vertically into 45 sections and hori-
zontally into 90 sections, for a total of approximately 4000 grid
rectangles per layer. Over a decade of field magnitude variation
is given by the linear color scale.

Fig. 6 shows that there are local electric vector field behav-
iors, which display local directional trends on a square grid by
square grid basis and interfacial normal and tangential field con-
tinuity consistent with the difference in media. Evidence of the
unusual interfacial field effects are seen due to the sign switch in
the normal component occurring as necessitated by continuous

and continuous requirements. Sign switch is imposed by
since it is scaled from by the constitutive scalar .

Similar to Fig. 6, Fig. 7 shows the magnetic-field magni-
tude and the cross-sectional vector field . The overall
trend of the magnetic field is to have clockwise circulation in
the LHM substrate and reverse or counterclockwise circulation
in the overlying region, previously seen in Fig. 5, but vividly
shown here. There are also more local vector field behaviors,
and interfacial normal and tangential field continuity consistent
with the difference in media. Evidence of the unusual interfa-

Fig. 8. Field distribution plot of the longitudinal Poynting vector �P field
vector (color denotes sign for �z and the magnitude) in the LHM device cross
section at f = 10GHz. Device dimensions are as in Fig. 5. (Note that we have
shown the negative of P based upon the conventions of Fig. 6 and 7.)

cial field effects are especially apparent just to the right- and
left-hand sides of the strip metal (located at mm) and
continuing to the sidewalls, where the sign switch in the normal
components occurs necessitated by continuous and contin-
uous requirements. Sign switch is imposed by since it is
scaled from by the constitutive scalar . This is also seen in
the magnetic line curves of Fig. 5.

The last figure completing the assessment at GHz is
the one giving the Poynting vector for the power propagating
down the guiding LHM structure. As seen in Fig. 8, nearly a
decade of linear variation is provided in the color scale with the
power distribution predominantly flowing in the -direction in
the LHM and around the microstrip metal above the substrate.
However, some small, but modest sized flow occurs to either
side of the strip in the air region.

Next, the field distribution is studied at GHz,
which is in the middle of the complex propagating region
of the dispersion diagram (see Fig. 2). Figs. 9 and 10 give
the electric- and magnetic-field arrow-magnitude distributions,
respectively (first shown in [18]). Both figures show that the
electromagnetic-field distributions are now much more complex
than at 10 GHz, and this is not surprising since frequency has
been increased by a factor of four, which, among other things,
reduces the wavelength accordingly. Also, the fields appear
much more localized about the microstrip metal. In order to allow
interpretation of these more complex field patterns, line field
distributions for electric and magnetic fields have been made
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Fig. 9. Field distribution plot of the transverse electric E field vector (arrow
length denotes magnitude) overlaid on the electric-field magnitude E = jEj
(color) throughout the LHM device cross section at f = 40GHz. Substrate and
geometry are the same as in Fig. 5.

and overlaid on their respective electric and magnetic magnitude
distributions, as shown in Figs. 11 and 12 (color magnitude
scales are those used in Figs. 9 and 10). For the electric-field
case, all the lines were also redone using and

( and is the baseline
setting) to see what the effect was on the lines and to examine
the accuracy of the interfacial conditions. It was found that only
very slight or minuscule changes occurred, mostly not even
noticeable, with the largest visually apparent change happening
for two lines terminating at mm at the place where
bending to go vertical occurs above the interface.

Three locations in Fig. 11 are shown where electric arrows
butt up against each other, oppositely directed. This occurs at

mm, and mm, mm. In each
case, this switch is allowed to occur inside the layer because the
field goes to zero precisely at the meeting place of the arrows.
For the case in the top region, it is clear what this means in re-
lation to the other electric field lines to either side of the -axis.
However, the effect is a bit more subtle below the interface and
is required to maintain the viability of the interfacial boundary
conditions. Regarding the numerical quality of the satisfaction
of these conditions, it has been found that it is generally within
a few percent or better at the regular-LHM boundary and, de-
pending upon the ability to dial in close to the interface and re-
solve the fields, and varying the basis function numbers and the
maximum spectral index, it is not uncommon to see this number
reach small fractions of one-hundredth of a percent.

Fig. 10. Field distribution plot of the transverse magnetic H field vector
(arrow length denotes magnitude) overlaid on the magnetic-field magnitude
H = jHj (color) throughout the LHM device cross section at f = 40 GHz.
Substrate and geometry are the same as in Fig. 5.

Fig. 11. Line distribution plot of the transverse electric E (solid white) field
vector overlaid on the electric-field magnitude E = jEj (color) in the LHM
device cross section at f = 40GHz. Substrate and geometry are the same as in
Fig. 5.
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Fig. 12. Line distribution plot of the transverse magneticH (solid white) field
vector overlaid on the magnetic-field magnitude H = jHj (color) in the LHM
device cross section at f = 40 GHz. Substrate and geometry are the same as in
Fig. 5.

Both Figs. 11 and 12 have the microstrip metal indicated by
a black line just to help understand where it is located, but the
interface has not been marked to avoid obscuring the graphic. It
should be remembered that the metal is taken as perfect and of
vanishingly small extent in the -direction. What has changed
in the Fig. 12, 40-GHz plot of the magnetic field from that of
Fig. 5, 10-GHz plot in terms of field lines, is that we now see
three different zones of circulating fields. Firstly, close in to the
microstrip metal are clockwise circulating patterns in the top
region, which close their loops extremely close to the metal, ei-
ther just above or below it, obeying the law that the circulations
enclose the proper amount of strip and electric displacement
currents normal to the cross section. In the same close-in re-
gion are counterclockwise circulating fields in the LHM, which
close their loops extremely close to the metal again, once again
obeying the enclosure rule. The second zone, includes those cir-
culating fields that are counterclockwise above the interface and
clockwise below it, going deep into the top layer to a maximum
of approximately mm, and reaching to the floor of the
LHM layer near in parts of their curves. Reducing their
maximum extent from the 3.5-mm value seems to make
the lines land near the microstrip metal edge. The third zone is
in the 2 4 mm rectangle beyond mm where the fields
circulate clockwise, satisfying the enclosing rule for electric dis-
placement currents. The extent of this final region is not incon-
sistent with the value in air, 3.75 mm, for filling a simple
waveguide (devoid of an exciting strip with delta function lo-
cated currents). Finally, in Fig. 13, a comparison with Fig. 8
shows that the Poynting vector has collapsed about the mi-
crostrip metal with much of the directed power flow being

Fig. 13. Field distribution plot of the longitudinal Poynting vector�P field
vector (color denotes sign for �z and the magnitude) in the LHM device cross
section at f = 40GHz. Device dimensions are as in Fig. 5. (Note that we have
shown the negative of P based upon the conventions of Fig. 9 and 10.)

taken up by the region above the interface, and the remaining
lesser amount of reversed flow just below the metal strip.

Field distributions have been calculated at 5 and 80 GHz also,
but space does not enable us to show them here. (For distribu-
tions at 5 GHz, see [19]1 .) What is learned from all these electro-
magnetic-field distributions is that the disposition of the fields
are radically different from that seen when ordinary media sub-
strates are employed. Although not entirely unexpected, what is
surprising are the specific attributes caused by utilizing LHM.

VII. CONCLUSIONS

In this paper, we have determined the dispersion diagrams
for a microstrip structure loaded with left-handed media. These
diagrams are quite unlike those for ordinary substrates, and
open up the possibility of designing entirely new electronic
devices. Further support and understanding comes with deter-
mining the electromagnetic-field distributions, and we have
shown some here. There are still other ways of displaying
the electromagnetic behavior in distributions (not shown
here), and we have been exploring these in order to ascertain
the surprising and sometimes astonishing characteristics of
guided-wave structures employing LHM. This area of research
is just in its infancy in terms of looking at what such materials

1In (2) and (3), typos require " and " to be replaced by " =

1=" and " = 1=" . This makes the electric equation (3) and the
later magnetic equation (9) analogous in form. Also, Fig. 5 shows the Poynting
vector—P , not P .
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could do for microwave and millimeter-wave integrated circuits
and we expect many more interesting results to follow.
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